
Exploiting Parallelism:The Tera Computer System
and the Multiscalar Processors

Romarie U. Lorenzo
Department of Electrical and Electronics Engineering

University of the Philippines

Abstract--Parallelism introduces complexities both in
hardware and in software. Studying the Tera Computer
System and the multiscalar processor gives us a glimpse of
these.

I. INTRODUCTION

Simultaneous multithreading (SMT)[1] was compared
to different architectures in our class reading. The article
mentions several alternative approaches to exploit
parallelism. In this paper, we explore the Tera computer
system[2] and the multiscalar processor[3]. We describe
their basic characteristics and take a look at what happened
in history: how it fared in industry for the case of the Tera
architecture and the progress of present researches for the
case of the multiscalar processor. Finally, we give some
insights regarding the complexities in the implementation
of parallelism.

II. THE TERA COMPUTER SYSTEM

A. Characteristics

The Tera Computer System was built to be suitable for
very high speed computation, which is equivalent to having
a short clock period. It was made to be scalable to many
processors, applicable to different types of problems, even
to those that do not vectorize well, and was made to have
easy compiler implementation.

The Tera MTA (multithreaded architecture) uses fine-
grained multithreading and long instruction words. Each
clock cycle, a processor selects a stream ready to execute.
Each stream has an associated state. Fast context switching
gives no time to swap state. Instead, the stream state is
replicated 128 times to make this work. Each instruction
typically specifies three operations: a memory reference, an
arithmetic operation and a control operation.

Its interconnection network features a uniform
distribution of resources. That is, every processor has equal
access to every memory location. This makes it easy to
program because concerns for the memory layout are
eliminated[10]. On the other hand, if p is the number of
processors, the number of network nodes grows as p3/2

rather than plog(p) which results when using multistage

networks. That is, the architecture has some additional
overhead per processor.

Memory latency is fully masked by parallelism only
when the number of messages being routed by the network
is at least p x l, where l is the round-trip latency. On the
example implementation, 70 different streams would be
required on each processor to hide the expected latencies if
the next instruction was not allowed to execute before the
previous one completes. Instruction lookahead or exposing
the pipeline could help. However, the Tera architecture uses
a new technique called explicit-dependence lookahead to
help reach its peak performance. A three bit lookahead field
specifies how many instructions from the stream will issue
before a dependent instruction is encountered. Using this, at
most eight instructions and twenty-four operations can be
executing at the same time for each stream.

B. How the Tera Architecture Fared
MTA is the architecture developed by Tera Computers.

It is capable of delivering high performance as promised. In
March 1997, Tera Computer Company announced that
MTA computer recorded the fastest single processor
performance ever when running the NASA NAS Parallel
Integer Sort benchmark. Tera ran the Integer Sort in only
1.54 seconds, beating any other supercomputers by more
than 10 percent using a prototype of its 1 Gigaflop-peak
multithreaded architecture[4].

Unfortunately, it is not just the performance that
matters. In the year 2000, Tera Computer Company
acquired Cray Research to form Cray, Inc. The Tera MTA
system was relaunched as the Cray MTA-2. Although this
computer is quite promising in performance due to its built-
in scalability, it was not a commercial success and only
shipped to two customers[5]. The original Tera computer
turned out to be nearly unmanufacturable due to its
aggressive packaging and circuit technology[6].

III. MULTISCALAR PROCESSORS
A. Characteristics

For a multiscalar processor, a single program is divided
into a collection of tasks by a combination of software and

hardware. These multiple tasks execute in parallel on the
processing units. The key, then, to making this work is the
proper resolution of inter-task dependencies. The processor
should be able to establish a large and dynamic window of
instructions from which parallel execution is scheduled.
The multiscalar processor walks through the control flow
graph(CFG) task by task, as opposed to instruction by
instruction.

This processing procedure imposes requirements for
multiscalar programs. They would need to supply particular
information to make this work out-- the actual code for the
task which accomplishes the work, the details of the CFG
structure and the communication characteristics of the
individual tasks. To handle register values, a create mask is
used to indicate the register values a task may produce.

On the hardware side, a sequencer will be needed to
determine the order of the tasks and an Address Resolution
Buffer(ARB) is provided to keep track of the data cache.

The best performance is achieved when the processor
capability is matched to the useful computation cycles.
There are many techniques that could be employed to
minimize non-useful cycles. Data communication could be
synchronized and the prediction could be validated early to
decrease the non-useful computation cycles. Intra-task
dependences and inter-task dependences were found to be
sources for no computation cycles. Also, the load should be
balanced by properly selecting the grain size of a task.

B. Multiscalar Work In Progress
Works on the multiscalar processor is being carried out

at the University of Wisconsin[8]. As they also pointed out,
this architecture requires new, never-before-designed
hardware structures and compiler algorithms. From
their site, we can see that research is being carried out to
fine-tune different aspects of the architecture.

IV. INSIGHTS
From these two architectures, we got a glimpse of the

complexities that could arise in exploiting parallelism. For
the Tera MTA, the hardware made it hard to manufacture in
its time. This reminds us that when we design, we should
also take note of its manufacturability. But we should be
open for these types of things because as we can see, this
architecture could be possible in the future. It's high
scalability may not have been needed in its time. But it is
good to note that it is easy to program. Also, we should note
that for commercial purposes, we should design a computer
for manufacturability.

Meanwhile, for the multiscalar architecture, a lot of
logic has to be implemented--from breaking down the
program into tasks up to the synchronization of data
communication. Programs for multiscalar also add burden
to the programmer. These type of architecture naturally
leads to the study of quite a number of different techniques.
Other architectures could probably take a look at the design
considerations from these studies that could be applicable
for them as well.

REFERENCES
[1] S.J. Eggers et al., "Simultaneous Multithreading: A Platform for
Next-Generation Processors," IEEE Micro, 1997, pp.12-19.
[2] R. Alverson et al., "The Tera Computer System," Proc. Int'l Conf.
Supercomputing, Assoc. of Computing Machinery, N.Y., 1990, pp.1-
6.
[3] G.S. Sohi, S.E. Breach, and T. Vijaykumar, "Multiscalar
Processors," Proc. Int'l Symp. Computer Architecture, ACM, 1995,
pp.414-425.
[4] “Tera Computer Company,” HPCWire, 1998,
http://www.hpcwire.com/hpc-
bin/artread.pl?direction=Current&articlenumber=71097
[5] “Cray,” Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Cray_Inc.#Cray_Inc, accessed August
2006.
[6] “Cray MTA-2,” Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Cray_MTA-2, accessed August 2006.
[7] C.H.Stork, “The Tera Architecture: Concepts and Experiences,”
www.ics.uci.edu/~cstork/talk/index.htm
[8] Wisconsin Multiscalar Group.
http://www.cs.wisc.edu/~mscalar/index.html
[9] J. Hickey, “Tera Computer's Multithreaded Architecture,” Virtual
Medical Worlds, November 1999.
[10] “Cray History,” from Cray, Inc. website,
http://www.cray.com/about_cray/history.html

http://www.cs.wisc.edu/~mscalar/index.html
http://en.wikipedia.org/wiki/Cray_MTA-2
http://en.wikipedia.org/wiki/Cray_Inc.#Cray_Inc

