Lab 9: Mutable Trees

Due by 11:59pm on Wednesday, October 25.

Starter Files

Download lab09.zip. Inside the archive, you will find starter files for the questions in this lab, along with a copy of the Ok autograder.

Topics

Consult this section if you need a refresher on the material for this lab. It's okay to skip directly to the questions and refer back here should you get stuck.


Mutable Trees

We define a tree to be a recursive data abstraction that has a label (the value stored in the root of the tree) and branches (a list of trees directly underneath the root).

Previously we implemented trees by using a functional data abstraction, with the tree constructor function and the label and branches selector functions. Now we implement trees by creating the Tree class. Here is part of the class included in the lab.

class Tree:
    """
    >>> t = Tree(3, [Tree(2, [Tree(5)]), Tree(4)])
    >>> t.label
    3
    >>> t.branches[0].label
    2
    >>> t.branches[1].is_leaf()
    True
    """
    def __init__(self, label, branches=[]):
        for b in branches:
            assert isinstance(b, Tree)
        self.label = label
        self.branches = list(branches)

    def is_leaf(self):
        return not self.branches

Even though this is a new implementation, everything we know about the functional tree data abstraction remains true. That means that solving problems involving trees as objects uses the same techniques that we developed when first studying the functional tree data abstraction (e.g. we can still use recursion on the branches!). The main difference, aside from syntax, is that tree objects are mutable.

Here is a summary of the differences between the tree data abstraction implemented as a functional abstraction vs. implemented as class:

- Tree constructor and selector functions Tree class
Constructing a tree To construct a tree given a label and a list of branches, we call tree(label, branches) To construct a tree object given a label and a list of branches, we call Tree(label, branches) (which calls the Tree.__init__ method).
Label and branches To get the label or branches of a tree t, we call label(t) or branches(t) respectively To get the label or branches of a tree t, we access the instance attributes t.label or t.branches respectively.
Mutability The functional tree data abstraction is immutable because we cannot assign values to call expressions The label and branches attributes of a Tree instance can be reassigned, mutating the tree.
Checking if a tree is a leaf To check whether a tree t is a leaf, we call the convenience function is_leaf(t) To check whether a tree t is a leaf, we call the bound method t.is_leaf(). This method can only be called on Tree objects.

Required Questions


Getting Started Videos

These videos may provide some helpful direction for tackling the coding problems on this assignment.

To see these videos, you should be logged into your berkeley.edu email.

YouTube link

Mutable Trees

Q1: WWPD: Trees

Read over the Tree class in lab09.py. Make sure you understand the doctests.

Use Ok to test your knowledge with the following "What Would Python Display?" questions:

python3 ok -q trees-wwpd -u

Enter Function if you believe the answer is <function ...>, Error if it errors, and Nothing if nothing is displayed. Recall that Tree instances will be displayed the same way they are constructed.

>>> from lab09 import *
>>> t = Tree(1, Tree(2))
______
Error
>>> t = Tree(1, [Tree(2)]) >>> t.label
______
1
>>> t.branches[0]
______
Tree(2)
>>> t.branches[0].label
______
2
>>> t.label = t.branches[0].label >>> t
______
Tree(2, [Tree(2)])
>>> t.branches.append(Tree(4, [Tree(8)])) >>> len(t.branches)
______
2
>>> t.branches[0]
______
Tree(2)
>>> t.branches[1]
______
Tree(4, [Tree(8)])

Q2: Cumulative Mul

Write a function cumulative_mul that mutates the Tree t so that each node's label becomes the product of its label and all labels in the subtrees rooted at the node.

Hint: Consider carefully whether the mutation of the tree should happen before or after processing the subtrees.

def cumulative_mul(t):
    """Mutates t so that each node's label becomes the product of all labels in
    the corresponding subtree rooted at t.

    >>> t = Tree(1, [Tree(3, [Tree(5)]), Tree(7)])
    >>> cumulative_mul(t)
    >>> t
    Tree(105, [Tree(15, [Tree(5)]), Tree(7)])
    >>> otherTree = Tree(2, [Tree(1, [Tree(3), Tree(4), Tree(5)]), Tree(6, [Tree(7)])])
    >>> cumulative_mul(otherTree)
    >>> otherTree
    Tree(5040, [Tree(60, [Tree(3), Tree(4), Tree(5)]), Tree(42, [Tree(7)])])
    """
    "*** YOUR CODE HERE ***"

Use Ok to test your code:

python3 ok -q cumulative_mul

Q3: Prune Small

Complete the function prune_small that takes in a Tree t and a number n and prunes t mutatively. If t or any of its branches have more than n branches, the n branches with the smallest labels should be kept and any other branches should be pruned, or removed, from the tree.

Hint: The max function takes in an iterable as well as an optional key argument (which takes in a one-argument function). For example, max([-7, 2, -1], key = abs) would return -7 since abs(-7) is greater than abs(2) and abs(-1).

def prune_small(t, n):
    """Prune the tree mutatively, keeping only the n branches
    of each node with the smallest labels.

    >>> t1 = Tree(6)
    >>> prune_small(t1, 2)
    >>> t1
    Tree(6)
    >>> t2 = Tree(6, [Tree(3), Tree(4)])
    >>> prune_small(t2, 1)
    >>> t2
    Tree(6, [Tree(3)])
    >>> t3 = Tree(6, [Tree(1), Tree(3, [Tree(1), Tree(2), Tree(3)]), Tree(5, [Tree(3), Tree(4)])])
    >>> prune_small(t3, 2)
    >>> t3
    Tree(6, [Tree(1), Tree(3, [Tree(1), Tree(2)])])
    """
    while ___________________________:
        largest = max(_______________, key=____________________)
        _________________________
    for __ in _____________:
        ___________________

Use Ok to test your code:

python3 ok -q prune_small

Optional Questions

Q4: Delete

Implement delete, which takes a Tree t and deletes any occurrence of x within it. The order of the branches must be preserved. >>> delete(t, 2)

Important: When a non-leaf node is deleted, the deleted node's children should be attached to the deleted node's parent. You may assume that the root of the tree will never be deleted.

def delete(t, x):
    """
    Delete any occurrence of the 'x' within Tree 't'. When a non-leaf
    node is deleted, the deleted node's children should be attached to
    its parent. The order of the branches must be preserved.

    Assume that the root will never be deleted.

    >>> t = Tree(3, [Tree(2, [Tree(2), Tree(2)]), Tree(2), Tree(2, [Tree(2, [Tree(2), Tree(2)])])])
    >>> delete(t, 2)
    >>> t
    Tree(3)
    >>> t = Tree(1, [Tree(2, [Tree(4, [Tree(2)]), Tree(5)]), Tree(3, [Tree(6), Tree(2)]), Tree(4)])
    >>> delete(t, 2)
    >>> t
    Tree(1, [Tree(4), Tree(5), Tree(3, [Tree(6)]), Tree(4)])
    >>> t = Tree(1, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(6), Tree(2)]), Tree(2, [Tree(6),  Tree(2), Tree(7), Tree(8)]), Tree(4)])
    >>> delete(t, 2)
    >>> t
    Tree(1, [Tree(4), Tree(5), Tree(3, [Tree(6)]), Tree(6), Tree(7), Tree(8), Tree(4)])
    """
    new_branches = []
    for _________ in ________________:
        _______________________
        if b.label == x:
            __________________________________
        else:
            __________________________________
    t.branches = ___________________

Use Ok to test your code:

python3 ok -q delete